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Executive Summary  

We investigate a framework to inform measurement of credit exposure in the 
Automated Clearing Settlement System (ACSS), which contributes to improved 
management of credit risk. Following Arjani (2016), we propose an empirical 
methodology based on extreme-value theory to assess credit exposure under extreme 
tail events. Applying the methodology to ACSS data, we obtain estimates for a shape 
parameter that governs the tail distribution of exposures.  We then discuss the 
reliability of our estimates and examine how a collateral pool derived from our model 
estimates evolves over time. Our findings have policy implications for both settlement 
and risk model determination in payment clearing and settlement systems.  

Key messages are as follows. 

 Direct Clearers (DCs) are exposed to credit risk in the ACSS.  This risk 
materializes in the event of DC default, via a survivors-pay loss-allocation 
mechanism in the ACSS. 

 In this paper, an extreme-value methodology is applied to obtain out-of-sample 
forecasts of potential credit exposures that could emerge for surviving DCs in a 
default scenario under unusual, tail-risk conditions. This is in contrast to more 
conventional approaches, including historical Value-at-Risk (VaR) models that 
draw inference strictly from past experience which could be benign and so 
underestimate potential tail risk.    

 Based on daily ACSS batch-entry data spanning 15 years, we estimate credit 
exposures which could emerge in extreme tail events, such as those that might 
arise once in 50 years. Such model-based quantitative estimates provide 
additional understanding of payments system data and can inform both the 
ongoing monitoring of payment flows and policy decisions about system risk 
controls, such as required collateralization.    

 A key question for practitioners and policymakers is the extent to which system 
risk controls – and in particular collateralization of credit exposure – should 
focus on measures of extreme tail risk such as those explored in this paper, or 
on more conventional measures that are based only on historical experience. 
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1. Introduction  

This paper explores the measurement of credit risk exposure in the Automated Clearing 
Settlement System (ACSS). The ACSS facilitates the clearing and settlement of 
primarily low-value electronic and paper-based payment items on behalf of Canadian 
financial institutions and their customers. In 2016, the ACSS cleared over $6.6 trillion 
in value, representing roughly 7.4 billion individual payments. These payments underpin 
much of the day-to-day activity in the Canadian economy. 

 
To economize on costs related to, for example, information technology requirements, 
and reflecting the predominantly paper-based payments landscape that existed in 
Canada at the time of its introduction in 1984, the ACSS is designed as a debit-entry 
batch-total clearing system. ACSS Direct Clearers (DCs) determine total payment 
volume and value information from payment files/items exchanged during the day with 
other financial institutions, and subsequently make bilateral entries into the ACSS 
against each other based on these amounts. Each day gives rise to multiple payment 
files/items being exchanged between financial institutions in Canada – reflecting 
different payment instruments, alternative exchange windows, etc. –which, in turn, can 
generate multiple clearing entries by DCs to the ACSS.   
 
Based on the bilateral entries by DCs during a given day, the ACSS performs ‘clearing’ 
by calculating each DC’s final multilateral net position, i.e., whether it is in a net debit 
or net credit position. Specifically, this is a single balance for settlement generated by 
the ACSS for each DC – which could be positive (i.e., net credit, the DC is owed funds 
by the system to complete ACSS settlement), negative (i.e., net debit, the DC owes 
funds to the system to complete ACSS settlement), or zero.  It follows that final net 
positions of DCs in the ACSS are summary measures, resulting from roughly 27 million 
unique daily transactions. Settlement of these final net positions takes place on the 
next business day by transfer of corresponding amounts across DCs’ ACSS settlement 
accounts held at the central bank. The Large-Value Transfer System (LVTS) is the 
mechanism used to transfer funds to and from DCs’ settlement accounts at the central 
bank. The ACSS is commonly referred to as a deferred net settlement system; as 
indicated above, DCs’ final positions are settled on a multilateral net basis on the 
following business day.1 Multilateral netting employed by the ACSS helps reduce cost 
and lowers settlement risk exposure between DCs.  
 
While settlement (credit) risk exposure is reduced between DCs as a result of 
multilateral netting, it is not necessarily eliminated. By design, DCs are exposed to 
credit risk vis-à-vis each other for the period between when an entry is made to the 
ACSS and when final settlement occurs the following business day.2 Moreover, as a 

                                                      
 

1 See Olivares and Tompkins (2016) for a global review of payment systems. Examples include the Large Value 
Transfer System (LVTS) in Canada, Federal Reserve Wire Network (Fedwire) in the United States, and Clearing 
House Automated Payment System (CHAPS) in the United Kingdom. 
2 Arjani (2016) provides a detailed analysis of the ACSS, including credit risk in that system. 
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debit-entry clearing mechanism (i.e., the bilateral ACSS entry is made by the DC that is 
owed funds following from payment exchange), there is no practical way by which a DC 
can limit its credit exposure each day.  Put simply, an entry by a DC into the ACSS 
exposes it to credit risk vis-à-vis the receiving DC, and DCs are typically constrained in 
how much control they have over batch entries to the ACSS each day (which are driven 
largely by economic activities of clients). 

 
Historically, as regards the management of credit exposure between DCs, and in the 
absence of requiring DCs to pledge financial collateral to secure this exposure, the 
ACSS has relied on relatively strict access criteria and, to a lesser extent, cross-system 
liquidity swaps against DCs’ LVTS positions to manage exposures.3 Despite having 
these measures in place, in the event that a DC with a final multilateral net debit 
position is unable to meet its ACSS settlement obligation via payment to the central 
bank, a legally binding loss-sharing agreement requires surviving DCs to collectively 
cover any shortfall resulting from the defaulter’s obligation to the system.4  
 
In 2016, the Bank of Canada designated the ACSS as a “prominent payment system”, 
which essentially means that the central bank considers that the ACSS poses sufficient 
risk to the Canadian financial system and economy that it should be held to enhanced 
oversight scrutiny. From the perspective of credit risk management, most notably this 
means that ACSS DCs must now collectively post sufficient collateral to the system to 
cover, with a high degree of confidence, the credit exposure related to the default of the 
DC that would generate the largest single credit exposure in the system, under extreme 
but plausible market conditions.5 A pre-funded collateral pool made up of individual 
contributions from each DC would provide the needed resources to enable timely 
settlement in the event of default.  
 
In this paper, we employ extreme-value empirical methods to inform the potential 
magnitude of credit exposure that could arise in the ACSS, which contributes to 
improved management of credit risk in the ACSS, and may also inform determination 
of an appropriate collateral pool.  
 
A conventional approach to collateralization sets a collateral pool with reference to a 
point in the distribution of potential losses observed over a recent reference period. For 
example, using a Value-at-Risk (VAR) method to determine a collateral pool for ACSS 
could require a pool sufficient to cover a target VAR threshold, such as the largest or 

                                                      
 

3 These swap arrangements are known as ‘Settlement Exchange Transactions’, or SETs, and are available to 
financial institutions that are both LVTS Participants and ACSS DCs.  A fundamental purpose of SETS is to 
reduce overnight interest costs that could accrue from large dislocations between settlement positions in the 
ACSS and LVTS. 
4 It follows that intraday liquidity capacity in the LVTS is directly related to prospective materialization of 
credit risk in the ACSS.  Of note, there has been no default in the ACSS since its inception in 1984. ACSS DCs are 
regulated deposit taking institutions in Canada. 
5 See http://www.bankofcanada.ca/wp-content/uploads/2016/02/criteria-risk-management-standards.pdf 
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99th quantile of the net debit positions observed during the last 12 months. (See 
Hendricks 1996 for a comprehensive discussion of VaR measures.) A shortcoming of 
VaR, however, is that it does not inform on potential losses beyond the specified loss 
threshold (Gregory 2015) – which could vary in magnitude depending on the degree of 
heaviness (or fatness) characterizing the tail of the distribution.  
 
Extreme-value theory (EVT) uses available historical data and statistical theory to 
approximate (estimate) the shape of the tail distribution to inform likelihood of extreme 
events occurring over long time horizons.  We explore and apply these methods to our 
data in this paper.6  Put briefly, EVT derives from an analog to the Central Limit Theorem, 
where a series of maximum values from independently drawn random samples will 
(asymptotically) converge to a given theoretical distribution governed by key 
parameters. Using our available historical series of tail, or outlier, ACSS net debit 
positions as an estimation sample, we solve for the theoretical distribution’s 
parameters that best explain the shape of the observed empirical tail distribution.  
Subsequently, we can project the empirical tail distribution to obtain corresponding 
theoretical exposure threshold levels and their probabilities. As a result, the 
methodology uncovers estimates for tail quantiles, or extreme events, not directly 
observable in recent data – such as one-in-50 year events.  
 
The reliability of such a projection is, of course, conditional on the estimation sample 
at hand and therefore entails model risk. Intuitively, our model estimates are 
informative to the extent that historical data contain a sufficient sample of tail events. 
 
As a preview of our results, our benchmark set of estimates suggests that the tail 
distribution is governed by a shape parameter that centers around zero, which implies 
that the distribution of ACSS credit exposure is not heavy tailed. However, our analysis 
also highlights the sensitivity of our estimates to model uncertainty. Finally, we 
illustrate the application of extreme value methods to determine a collateral pool with 
respective DC allocations updated using monthly data.  
 
The next two sections of the paper discuss data and methodology. Section 4 presents 
results, and Section 5 concludes.  
 
 
 
 
 

                                                      
 

6 Generally speaking, EVT refers to the science of estimating the tails of a distribution. Longin (2016) reviews a 
comprehensive collection of papers about EVT and its applications in finance. Galbraith and Zernov (2009) 
study extreme dependence in financial returns. Danielsson and Zhou (2016) study and compare estimation 
uncertainty in VAR and expected shortfall analysis. Hull (2007) discusses the benefits of expected shortfall 
analysis compared to VAR for portfolio management.  
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 2. Data 
 
The ACSS clears the majority of non-cash retail payments in Canada, about 27 million 
transactions each day worth on average $25 billion.  These are payments where a 
transfer of funds between accounts held at different financial institutions – which are 
represented by different DCs in the ACSS – is required. In 2016, the ACSS cleared over 
$6.6 trillion in value, representing roughly 7.4 billion individual payments.  Figure 1 plots 
aggregate monthly values and volumes of payments cleared through ACSS from 
January 2002 to March 2017, corresponding to the historical period used in our 
estimation sample.  
 
As noted above, the ACSS produces a final settlement balance for each DC – its 
multilateral net position – for a given payments cycle per business day. Figure 2 
presents incoming and outgoing payment flows for a selected DC and the resulting 
multilateral net position over time. Credit risk materializes when a DC is incapable of 
meeting its final settlement obligation (a debit, or payable, multilateral net position) – 
that is, at time of settlement it is unable to deliver funds to its ACSS settlement account 
at the Bank of Canada in an amount equivalent to its final multilateral net debit position.  
 
The historical empirical distribution of daily multilateral net debit positions serves as a 
natural starting point to study exposures that could arise in ACSS. Figure 3 plots the 
densities of historical net debit positions for selected DCs from our sample period. The 
densities are highly skewed with critical mass centering near the origin. Figure 4 plots 
the density of the daily maximum net debit position observed in the ACSS across all 
DCs. While the mass of observations is below $500 million, the density is again highly 
skewed, with a small number of observations between one and two billion dollars. The 
highly skewed nature of the data raises questions about whether large outliers may be 
underrepresented in the sample. 

 
Figure 5 illustrates the effectiveness of a collateral pool calibrated from historical 
empirical quantiles ex post. For instance, the 99th empirical quantile is expected to give 
rise to a shortfall in one percent of cases, or once in every 100 business days. 
Understanding the potential magnitude of a shortfall, where a net debit position 
exceeds the available collateral pool, is an important component for informing risk 
tolerance. These perspectives motivate the use of an extreme-value statistical model 
to shed light on the underlying uncertainty of tail risk, and to inform the risk versus 
efficiency trade-off when choosing a given collateral pool. 
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3. Methodology 
 
There are two main approaches to modeling the tails of a distribution: block maxima 
and peak over threshold. The peak-over-threshold approach models the empirical tail 
above a threshold level while the block maxima approach models the maximum values 
from a specified window of time, or block, such as weekly or monthly intervals. We 
provide an overview of these methods below. 
 
(a) Block Maxima Method 

 
For this method, the data are grouped into sequences of observations of a 
predetermined length (blocks) from which the maximum value of each block is 
selected. This, in turn, generates a series of block maxima. It can be shown that the 
distribution of block maxima, rescaled using location and shape parameters, converges 
asymptotically to a generalized extreme value (GEV) distribution. This limiting 
distribution corresponds to one of three types of extreme value distributions, 
regardless of the underlying distribution of the population (Coles 2001). Formally, we 
define the series of maxima as Mm = max{X1,X2,...,Xm}, where the set of independent 
random variables X1,X2,...,Xm have a common, but unknown, distribution, F. In the current 
context, Xi are daily net debit positions of participants observed over m periods based 
on daily, weekly and monthly sized blocks.  

 
Specifically, the class of limiting distributions have the form: 

 
 

𝐺(𝑧) =  𝑒𝑥𝑝 ൭− ቆ1 + 𝜉 ቀ
𝑧 − 𝜇

𝜎
ቁቇ

ିଵ/క

൱ 

         
 
which incorporates three types of extreme value distributions known as Gumbel, 
Frechet and Weibull distributions and where z refers to the series of maxima net debit 
positions (Fisher-Tippet Theorem). The parameters that define the family of these 
distributions, and which are to be estimated using historical data, are a location 
parameter µ, a positive scale parameter σ, and a shape parameter ξ.  
 
The shape parameter ξ determines the behavior of the tail distribution; that is, ξ 
indicates which family of extreme value distributions correspond to the data.  
Therefore, ξ is of central interest in this analysis. Specifically, an estimated shape 
parameter that is negative, ξ < 0, corresponds to a Weibull distribution that is 
theoretically bounded. In contrast, a zero shape parameter corresponds to an 
unbounded but well-behaved distribution (Gumbel) which includes the Normal. A 
positive shape parameter is associated with an unbounded but heavy tailed distribution 
(Frechet). Estimating ξ reveals the tail behaviour of the data, and the strength of that 
categorization depends on the degree of confidence in the estimation. As described in 
Coles (2001), through inference on ξ, the data themselves determine the most 
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appropriate way to summarize tail behaviour. Uncertainty in the inferred value of ξ 
therefore implies lack of certainty as to which of the three distributions best 
characterizes the data. 
 
(b) Peak-over-Threshold Method 
 
One potential drawback of the block maxima approach is that some blocks may contain 
more extreme observations than others and these values are excluded from the 
estimation. As a result, block maxima does not fully use the information content when 
data are available at higher frequency. The peak-over-threshold approach builds on the 
GEV distribution by modeling a conditional series of tail exposures above a given 
threshold. As a result, there is a direct relationship between the two approaches.  
 
Specifically, we define the subset of observations 𝐸௧ that exceed a given high threshold 
𝞽 such that 𝐸௧ = 𝑋௧ − 𝞽  where an individual observation is defined as 𝑒 = 𝑥 − 𝞽, for 𝑥 ≥

𝝉. The conditional distribution of the excesses 𝐸௧ can be approximated by the 
Generalized Pareto Distribution (GPD) if the threshold 𝞽 is sufficiently high and some 
regularity conditions hold (Balkema-de Haan-Pickands Theorem). We can write the 
limiting distribution as: 
 

  𝐻(𝐸) = 1 −  ቀ1 +  
క௘

ఙ෥
ቁ

ିଵ/క
 

 
where 𝜎෤ and ξ are the scale and the shape parameters, respectively, and where 𝑒 > 0, 
𝑒 ≤ −

ఙ෥

క
 , and 𝜎෤ =  𝜎 + 𝜉(𝜏 − 𝜇).  Similarly, the shape parameter defines the behaviour of 

the tail. 
 
(c) Model Diagnostics and Robustness 
 
We use the method of maximum likelihood to obtain estimates of the model parameters 
using the algorithm developed by Roodman (2015). The principle of maximum 
likelihood estimation is to identify the model parameter values that have the greatest 
probability of generating the observed data. In some cases, the (log) likelihood function 
has an explicit functional form that can be solved analytically. But, in most applications, 
an analytical solution is not possible and numerical methods are required. Model 
diagnostics entail comparing the empirical and fitted (estimated) distribution 
functions. Furthermore, stability of parameter estimates across both methods and over 
a range of model choices serve as additional robustness checks. 
 
While assessing model fit is important, a key consideration for ascertaining the 
reliability of our estimates lies in the implicit assumption that the asymptotic properties 
under which the model is based holds. For instance, selecting an estimation sample of 
tail observations drawn from a short window (under the GEV approach) or a low 
threshold (under the GPD approach) is likely to lead to a biased model based on a 
contaminated estimation sample that incorrectly includes some observations, but 
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where model parameters will be estimated with greater precision (low variance) given 
the larger sample size. In contrast, a longer window, such as annual, or a high threshold 
choice will correspond to unbiased model estimates but which are imprecisely 
estimated due to a smaller sample size. To illustrate, a series of annual maxima (high 
threshold) might best satisfy the asymptotic criteria of the model but our estimation 
sample would include (only) 15 observations. As a result of these tradeoffs, we show a 
range of parameter estimates and highlight some of the uncertainty embedded in our 
modeling assumptions. The bootstrap bias correction estimator of Giles, Feng and 
Godwin (2013) minimizes some of the small sample bias. 
 
A second implicit assumption requires the series of maxima to be independent and 
identically distributed (iid). An independence assumption for the series of maxima is 
likely to be a reasonable approximation so long as the block length (and corresponding 
threshold choice) is sufficiently large.  For instance, it is unlikely that there is any 
dependence between observations from an annual series of maxima as compared to a 
shorter block such as daily or weekly. Consequently, the choice of block length and 
threshold level also influence the degree to which the independence assumption holds. 
The block maxima approach is more robust to the iid assumption because the block 
allows for potential correlation (or clustering) within a specific block.  
 
(d) Estimating Extreme Quantiles 
 
After fitting the data to either GPD or GEV distributions, estimates of extreme quantiles 
can be obtained by inverting the distribution’s functional form and substituting the 
model parameters with the estimated ones. Using notation as in Coles (2001), we 
define G(zp) = 1 – p, where zp is the return level, or dollar value, associated with return 
period 1/p. The level zp is expected to be exceeded on average once every 1/p days. In 
the case of the 99th quantile, p is set to 0.01, corresponding to a once in every 100 days 
event. The return levels can then be plotted against their corresponding return periods 
resulting in a return plot, or risk curve. When the estimated shape parameter is negative, 
the risk curve will be convex and bounded implying an upper limit exists on tail 
outcomes. 
 
In the case of GEV, estimates of extreme quantiles, 𝑧௣, are obtained by inverting G(Z): 
 

𝑧௣ =  𝜇 −  
𝜎

𝜉
ൣ1 − {−log (1 − 𝑝)}ିక൧ 

 
and in the case when using the GPD, inverting the limiting distribution H(E) we obtain: 
 

𝑥௠ = 𝜏 +  𝜎ൣ(𝑚𝜁ఛ)క − 1൧, 
 
where 𝑥௠ denotes the level that is exceeded on average every m observations, 𝜁ఛ 
denotes the proportion of the sample that exceeds the threshold level 𝜏 which 
measures the probability that an observation will exceed the threshold level.  
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4. Results 
 
Table 1 presents the regression results from both GPD (Peak over Threshold) and GEV 
(Block Maxima) models. The GPD model is estimated using a threshold of $800 million 
and consequently the estimation sample is based on 212 observations. For the GEV 
model, we show results for daily, weekly and monthly windows. The GPD threshold 
model and the GEV monthly window model parameter estimates are roughly equivalent. 
 
A key finding from the set of regressions is that the estimates for the shape parameter 
are never statistically negative, indicating that the distribution of underlying extreme 
observations is unbounded. For robustness, we re-estimate all models using a bias 
correction estimator as in Giles, Feng and Godwin (2013) and Cox and Snell (1968). We 
observe that the standard errors decrease particularly for the monthly window results 
given their lower sample size, but in general the bias correction estimator does not 
change the statistical significance of any parameters. The last row of Table 1 provides 
return level estimates for one-in-ten year return periods and their respective confidence 
intervals for all models. 

 
In the case of both GPD and monthly GEV regressions, the shape parameter is not 
statistically different from zero; suggesting that the distribution of extreme, or outlier, 
values is unbounded but not heavy tailed. In contrast, the opposite is found under the 
GEV daily and weekly window regressions, where the shape parameter is statistically 
positive suggesting a heavy tail distribution. An increasingly positive shape parameter 
implies a more skewed and heavy tailed distribution. Figure 6 plots a corresponding 
risk curve using the GPD model, mapping each quantile (or return period), measured in 
days, relative to its respective threshold exposure level (return level). As a result, Figure 
6 visualizes the tradeoff when choosing a given collateral level in terms of efficiency 
and risk. Figure 7 provides a diagnostic plot comparing modeled and empirical 
quantiles; a straight line suggests a good fit. 
 
As discussed in the methodology section, model estimates derived from smaller block 
sizes and lower thresholds are likely to be biased as the estimation sample departs 
from the asymptotic basis of the model. For instance, because a set of smaller outliers 
are included in the daily and weekly window analyses, they are potentially less 
informative as they shift the distribution of outliers towards the smaller ones. As we 
move from the daily window (unit of observation) towards the weekly window, the 
skewness becomes less pronounced. Furthermore, we observe a poor model fit for the 
daily and weekly GEV models as the theoretical quantiles match only the lower end of 
the tail.  Consequently, the usual bias variance tradeoff ensues (as the daily and weekly 
regressions benefit from a larger estimation sample size). The choice of window length 
is similar to the choice of bandwidth in non-parametric statistics: in the limit, when a 
daily window is selected overlapping with the actual data, the empirical distribution 
converges to its original skewed form (see Figure 4).  
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A similar tradeoff follows in the case of GPD; Figure 8 shows varying shape parameters 
estimates as we adjust the threshold level from $500M to $1.4B. We observe that the 
shape parameter is initially slightly positive, then hovers around 0, and finally begins to 
increase as the threshold surpasses the $1B level, at which point the estimation sample 
declines below 100 observations. By construction, the log likelihood measure improves 
as fewer observations imply less variability in the data and as a result does not provide 
a useful information criterion for choosing block size or threshold choice. For 
sensitivity analysis, Figure 9 provides a range of exposure (return) levels for a one-in- 
ten year return period for a range of (assumed) shape parameters. 
 
A second source of model uncertainty is driven by whether the underlying distribution 
generating maxima is stationary. One approach to account for non-stationarity is to 
incorporate functions of time or other covariates for the model parameters. For 
instance, the data suggest a structural shift has occurred post-2007. To test this 
hypothesis, we run the GPD model splitting the sample into two periods, pre- and post-
2007; we find an upward shift in the risk curve occurred following 2007. One factor that 
might explain this shift is the continued increase in volumes and values that clear 
through the ACSS, particularly in recent years. Figure 10 displays the increase in the 
95th, 97th, and 99th model quantiles as the historical sample has increased over time. 
Both empirical and estimated model quantiles have remained approximately stable 
since 2012. In practice, as time evolves and the estimation sample increases, estimated 
parameters will change due to sampling variability but also potentially due to structural 
shifts that affect the underlying distribution generating tail outcomes. In other words, 
the shape of the tail distribution can change over time. 

 
4b. A Dynamic Collateral Pool and Individual Participant Contributions 
 
In this section, we illustrate the efficacy of a collateral pool derived from our model 
estimates, where the estimation sample is updated monthly to reflect incoming data.  
Data from 2002 to 2006 are used to initialize the model estimates for the first month of 
January 2007 and the model is updated monthly through to March 2017 (roughly ten 
years). Figure 11 displays the evolution of collateral pools based on 100 days, and 10 
year, 20 year, and 50 year return periods using the GEV (monthly window) model. The 
distance between different return levels is governed by the shape parameter. For 
comparison, the figure also shows the evolution of the 99th empirical quantile. We find 
that a collateral pool based on the 10 year return period using the GEV model (of 
approximately two billion dollars) exhibits a shortfall in one month over the ten year 
period, of roughly $30 million. In contrast, the 99th empirical quantile of roughly $1 
billion exhibits shortfalls roughly twice per year (ranging in magnitudes). 
 
While the estimation sample to obtain a system-level cover-one collateral pool is 
derived from the set of largest net debit positions observed in ACSS each day, the 
model can also be applied separately for each DC’s respective historical set of end-of-
day net positions. Such individual participant model estimates for tail risk could inform 
collateral pool allocation criteria. For example, each DC could contribute collateral 
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proportional to the model’s estimate of a tail quantile for that participant, such as a 
one-in-ten-year event. Figure 12 illustrates each DC’s contribution under such an 
approach at a snapshot in time (using data up until a given period). Based on this 
approach and similarly updating individual participant estimates monthly, Figure 13 
depicts the aggregate collateral pool and respective DC contributions updated monthly 
from 2007 to 2017. 
 
Interestingly, our analysis highlights important heterogeneity across DCs in terms of 
the shape parameter governing the tail distribution of their net debit positions and how 
these estimates can change over time; see Figure 14. Individual model estimates at the 
DC level can also serve as a monitoring and anomaly detection tool as well as identify 
changes in risk that specific DCs bring to the system. Importantly, the shape of the tail 
distribution of the daily maximum of net debit positions (which is the focus of this 
paper) differs from individual DC tail distributions. As a result, an alternative approach 
to derive a model-based collateral pool might be to estimate models for DCs separately 
and base the system-wide collateral pool according to the DC that poses the highest 
risk (or largest tail exposure). Future research might investigate tail dependence 
between select DCs. 
 
 
5. Conclusion  
 
Given recent interest in collateralizing exposures in the ACSS, this paper proposes a 
framework for measuring credit exposure in the ACSS using extreme-value empirical 
methods. We review our set of findings below.  
 
First, we estimate a series of models and conduct small sample bias tests using the 
extreme occurrences of historical end-of-day ACSS net debit positions and uncover the 
key parameters that categorize best-fitting GEV and GPD distributions. From the 
estimated model parameters, we obtain a risk curve that quantifies estimated exposure 
size and cadence of such exposure (Figure 6). In our benchmark models (GEV monthly 
window and GPD with an $800M threshold), the shape parameter is found to be 
statistically no different than zero implying an unbounded, but not heavy (or fat), tail of 
potential losses or risk curve.  

 
Second, we illustrate how structural changes in the payments environment can affect 
the degree of risk, or model parameter estimates, observed in the data. We find 
significant differences when estimating our model using data from two periods, pre- 
and post-2007, where the latter is categorized by increasing volumes as well as other 
changes stemming from the post financial crisis era. Similarly, financial transactions 
such as SETs can also affect the tail distribution. As a result, a key theme of our paper 
surrounds the robustness of our model estimates and the importance of sensitivity 
analysis. Other risk management methods, such as stress testing, can also be used to 
complement statistical-based measures considered in this paper. 
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Finally, we illustrate how a collateral pool and individual DC contributions can be 
determined in practice from our benchmark models where estimates are updated on a 
monthly basis as new data arrives. 
 
The extreme value methodology applied in this paper provides a useful tool for 
understanding tail risk and to inform system design. A key question for practitioners 
and policymakers is the extent to which risk controls and collateral requirements 
should focus on exposures in extreme tail events, as explored in this paper, or on more 
conventional models that are based only on historical experience. Since it is impossible 
for a DC in ACSS to constrain its exposures in that system (because it is a debit entry 
system), and since, as shown here, exposures can be large in tail events, consideration 
might be given to use of extreme value methods instead of conventional, historical VaR 
methods to inform collateral requirements. An important consideration in this regard is 
the tradeoff between collateral efficiency and risk exposure.   

 
Given the modernization of Canada’s payment systems currently underway, these 
various issues are central to system design considerations and policy rules governing 
the next-generation batch clearing and settlement system.  
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Tables and Figures 

 

Table 1 – Select GPD and GEV Model Estimates 

 GPD GEV 

 $800M Threshold Daily Weekly Monthly 
µ  2.696e+08*** 5.010e+08*** 8.253e+08*** 

  (2604944) (8749894) (2.2E+07) 
Ln(σ) 19.439*** 18.788*** 19.132*** 19.438*** 

 (0.094) (0.014) (0.033) (0.058) 
ξ -0.064 0.186*** 0.116*** -0.040 

 (0.065) (0.014) (0.031) (0.052) 
N 212 4029 706 192 
log likelihood -4,319.47 -82,485.4 -14,669.9 -4,030.78 

     

 Cox-Snell bias correction 
ξ -0.048 0.186*** 0.117*** -0.037 

 (0.057) (0.012) (0.028) (0.046) 
     
 Estimated Return Levels (in billions) 
10 year 2.00 2.82 2.40 2.03 
95% CI [1.75, 2.25]    [2.53, 3.10] [2.00, 2.80] [1.77, 2.29] 

 

Note: *** denotes statistical significance at the 99% level. Standard errors reported in 
parentheses. 1,000 bootstrap replications are used for the Cox-Snell bias corrected standard 
error estimates. Our estimation sample is derived from ACSS data over the time period 
January 2002 to March 2017. 
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Figure 1 – Value and Volume of Payments 
 

 

 
 
Figure 2 – Visualizing Payment Flows for a Select Participant  

 
Note: Y-axis in dollars and arbitrarily re-scaled.  X-axis measures time in days, intentionally left blank. 
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Figure 3 – Density Plots of End of Day Net Debit Positions for Select Participants 

 

Note: The figures show kernel density plots using daily end of day net debit position data for 
select participants over the time period January 2002 to March 2017. X-axis denotes dollars; y-
axis denotes density. 
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Figure 4 – Daily Maximum Net Debit Position across ACSS Participants 

 

Note: Kernel density plot of the daily maximum end of day net debit position across 
participants over the time period January 2002 to March 2017. X-axis denotes dollars; y-axis 
denotes density. 
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Figure 5 – Historical Maximum Daily Net Debit Position in ACSS and Empirical Quantiles 
 

 
Note: Scatter points measure the largest net debit position in ACSS observed across all DCs for each 
business day over the time period January 2002 to March 2017. Empirical quantiles computed ex post 
and 99th percentile corresponds to a threshold amount that is exceeded on only one percent of days.  
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Figure 6 – Risk Curve: Return Period in Days – GPD Model 
 

 

Note: Estimation sample is based on the GPD model in Table 1. Model estimate (red line) and 
confidence interval shaded in grey are overlapped with empirical quantiles (blue data points). Data is fit 
to a peak-over-threshold Generalized Pareto distribution using maximum likelihood. Estimated shape 
parameter indicates an upper limit on extreme values and a concave risk curve. 
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Figure 7 – GPD Model Diagnostic Plot – Empirical vs Modeled Quantile 

 
 
Figure 8 – GPD Diagnostic – Varying Shape Parameter and Threshold Level 
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Figure 9 – Sensitivity Analysis, Varying 10 year return levels by Shape Parameter 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

D
o

lla
rs

, 
in

 B
ill

io
n

s

Shape parameter



 

 25 

Figure 10 – Evolution of Empirical and Model Quantiles as the Historical Sample Size 
Increases 
 

 
 
Note: 2005 model and empirical estimates are based on estimation sample covering January 2002 to 
December 2005. For subsequent years, model and empirical estimates are re-updated by including 
additional observations for the respective year to the estimation sample. p95, p97, p99 correspond to 
empirical quantiles; m95, m97, m99 correspond to model-based quantiles. 
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Figure 11 – Rolling Cover-One Collateral Pool, Updated Monthly (GPD monthly window model) 

 

 

Figure 12 – Collateral Pool Allocation Based on Proportional Size of 10 year model return 
periods 
 

 
 
Note: A-K represent individual participant percentage contributions to a collateral pool. Participant B 
has the largest contribution to a collateral pool. 
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Figure 13 – Participant Contributions to a rolling collateral pool (GEV monthly window model) 
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Figure 14 – Individual Participant Rolling Shape Parameter Estimates (GEV Monthly window) 

 

Note: Dashed grey line represent shape parameter estimates using the series of daily 
maximum net debit positions in determination of aggregate exposure for the case of cover-
one.  


